If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31x^2-2x-360=0
a = 31; b = -2; c = -360;
Δ = b2-4ac
Δ = -22-4·31·(-360)
Δ = 44644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44644}=\sqrt{4*11161}=\sqrt{4}*\sqrt{11161}=2\sqrt{11161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{11161}}{2*31}=\frac{2-2\sqrt{11161}}{62} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{11161}}{2*31}=\frac{2+2\sqrt{11161}}{62} $
| s+7=15 | | 5u-9+3(3u+7)=-2(u+1) | | 23y+50+27y=50y+5023y+50+27y=50y+50 | | x+12+12x+18=180 | | 5u-9+9u+21=-2u-2 | | -4=-3x-3/8 | | 3(y-4=12 | | x+12+12x+18+160=180 | | 44.6y=56.3-y | | x+x+x+x-8=52 | | (6x+24)+(2x+20)=180 | | -w+293=186 | | 5x-6=4x+11 | | 3x-7/4=x+8/2 | | 9x+11+3x+3+82=180 | | 550-5x=50+5x | | 82+3x+3=180 | | 13~x=84.5 | | 3x+3+82=180 | | 155=233-y | | 2/3(6x-9)+4=18+2x | | m=5=12 | | 2m+13=5m+4 | | 8-18x+24=7x+34 | | 4×+8=3x-3 | | 4x-25=13 | | -10k−4=-9k+3 | | -2f=-f+3 | | 185=-u+80 | | 4-5(x-6)=3(3-x)-1 | | 3z−4=4+7z | | x-7=x-14 |